Testing Some Covariance Structures under a Growth Curve Model in High Dimension
نویسندگان
چکیده
In this paper we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a Growth Curve model. The maximum likelihood estimator (MLE) for the mean in a Growth Curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N . The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N . For both structures (a) and (b), we modify the MLE for the mean to an unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix. To compare the performance of all four tests we compute for each structure (a) and (b) the attained significance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE.
منابع مشابه
Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures
Driven by a wide range of contemporary applications, statistical inference for covariance structures has been an active area of current research in high-dimensional statistics. This paper provides a selective survey of some recent developments in hypothesis testing for high-dimensional covariance structures, including global testing for the overall pattern of the covariance structures and simul...
متن کاملLINEAR HYPOTHESIS TESTING USING DLR METRIC
Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...
متن کاملRelationship between Ecological Footprint and Economic Growth in D8 Countries: Testing the Kuznets Environmental Hypothesis Using PSTR Model
This study examines the Kuznets environmental curve among D8 countries in the period 1961–2016. The Kuznets environmental curve shows the reversed U-shaped relationship between economic growth and environmental degradation. In this paper, two methods of time series estimation and smooth panel transition estimation were used to test the hypothesis of this relationship. Also, the ecological footp...
متن کاملTests for covariance matrices in high dimension with less sample size
In this article, we propose tests for covariance matrices of high dimension with fewer observations than the dimension for a general class of distributions with positive definite covariance matrices. In one-sample case, tests are proposed for sphericity and for testing the hypothesis that the covariance matrix Σ is an identity matrix, by providing an unbiased estimator of tr [Σ] under the gener...
متن کاملTesting block-diagonal covariance structure for high-dimensional data under non-normality
In this article, we propose a test for making an inference about the blockdiagonal covariance structure of a covariance matrix in non-normal highdimensional data. We prove that the limiting null distribution of the proposed test is normal under mild conditions when its dimension is substantially larger than its sample size. We further study the local power of the proposed test. Finally, we stud...
متن کامل